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A PASSIVITY BASED CONTROLLER FOR SPACE MANIPULATORS

Abstract

A feedback linearization technique is used in conjunction with passivity concepts o design robust controllers
for space robots. It is assumed that bounded modeling uncertainties exist in the inertia matrix and the vector
representing the coriolis, centripetal, and friction forces. Under these assumptions, the controller guarantees
asymptotic tracking of the joint variables. A Lagrangian approach is used to develop a dynamic model for space
robots. Closed-loop simulation results are illustrated for a simple case of a single link planar space manipulator with
freely floating base.

1. Introduction

The dynamics of the space manipulators differs from that of the ground based manipulators since their base, the
spacecraft, is free to move. The movement of the manipulator produces reaction forces and torques on the base.
Therefore the resulting motion of the spacecraft has to be accounted for in the dynamic model for the manipulator.
However, Papadopoulos and Dubowsky [1] showed that a dynamic model for space robots developed by taking into
account the motion of its base is similar in structure to dynamic models of fixed base manipulators. For instance, the
inertia matrix in each case is symmetric and positive definite. '

A few concepts have been proposed for joint trajectory control and inertial end tip motion control of space
manipulators. Vafa and Dubowsky [2] developed an analytical tool for space manipulators, known as the virtual
manipulator concept. The virtual manipulator is an idealized kinematic chain connecting its base, the virtual base, to
any point on the real manipulator. This point can be chosen to be the manipulator's end effector, while the virtual
base is located at the system center of mass, which is fixed in inertial space. As the real manipulator moves, the end
of the virtual manipulator remains coincident with the selected point on the real manipulator. Additionally, it can be
shown that the change in orientation in the virtual manipulator's joints is equal to the change in the orientation of the
real manipulator's joints. While these features give the designer the ability to represent a free floating space
manipulator by a simpler system whose base is fixed in inertial space, the associated transformation depends on
knowing the system parameters exactly. Alexander and Cannon [3] showed that the end tip of the space robot can
be controlled by solving the inverse dynamics that includes motion of the base. Their method assumes the mass of
the spacecraft to be relatively large compared to that of the manipulator it carries, and also requires much
computational effort to determine the control input. Note that, future systems are expected to have the manipulator
and spacecraft masses of the same order. Umetani and Yoshida [4] proposed the gencrahzed Jacobxan matrix that



relates the end tip velocities to the joint velocities by taking into account the motion of the base. The control method
presented in the above reference is based on the concept of Resolved Motion Rate Control and Resolved
Acceleration Control. However, robustness of the control scheme to modeling uncertainties is not discussed.
. Masutani et. al. [5] proposed a sensory feedback control scheme based on an artificial potential defined in the sensor
coordinate frame. This scheme is based on proportional feedback of errors in the end tip position and orientation as
well as feedback of joint angular velocities.

In this report a robust control scheme based on feedback linearization and passivity concepts is proposed for
space robots. A similar control scheme has been proposed earlier for fixed base robots by Abdallah and Jordan [6].
The extension to space robots is in the spirit of the [1], where it was proposed that due to the striking similarity in
the structure of the equations of motion of fixed base and space robots; almost any control scheme used for fixed
base robots can be applied 1o space robots. The control scheme uses inverse dynamics; however, it is robust in the
face of bounded modeling uncertainties which might be due to imprecise modeling and/or intentional simplifications
to the model based control law in order to reduce computational effort. The controller asymptotically tracks
prescribed time varying joint angle trajectories whose acceleration is bounded in the L2 space.

The development of the equations of motion for space robots presented here closely follows that given in [5]. A
space manipulator system in the satellite orbit can be approximately considered to be floating in a non-gravitational
environment. As shown in Figure 1, the manipulator and the base can be treated as a set of n+1 rigid bodies
connected through n joints. The bodies are numbered from zero to n with the base being 0 and the end tip being n.
Each joint is then numbered accordingly from one to n. The angular displacements of the joints can be represented
by a joint vector,

q = [q; Gp--0p]T ()

The mass and inertia tensor of the ith body are denoted by mj and Ij, and the inertia tensor is expressed in the base
frame coordinates.

2.1 Kinematics
A coordinate frame fixed to the orbit of the satellite can be considered to be an inertial frame, denoted by Zj. In

addition to I, another coordinate frame Iy is defined that is attached to the base with its origin located at the base
center of mass. The attitude of the base itself is given by roll, pitch, and yaw angles. In the sequel, all vectors are
expressed in the base fixed coordinate axes.
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Figure 1. A Space Robot.

Let Vj be the linear velocity of the center of mass of the #h link with respect to the inertial frame. Also, for the
ith Link, let Q; be the angular velocities with respect to the inertial frame, and let ©; be the angular velocity with
respect 1o the base frame. Then V; and £2; can be written as

Vi=VB +vi + QB xr1j )
Qi = Qp + o ' 3
where ; is the position vector of the center of mass of the ith body with respect to the base center of mass, and

v; =f;. Vp and Qp are the center of mass linear velocity and angular velocity respectively of the base with respect
to the inertial frame. v; and « for each link can be represented by the following forms

v, = Ju(Q4 ' @)



o; =Ju(Q4d )
where JLi(q) and JAj(q) € R3*™" are the Jacobian matrices for the ith link .

The position of the system center of mass with respect to the base frame depends on the joint angles. Given

below are two measures related to the system center of mass

m, = zmi (6)

r.(Q)= L mir;(@)/m, ™

i=0

2.2 Dynamics ,
The total kinetic energy of the space robot can be writien as

_l-T - naxn
T= >4 D(q)4, DeR ®)

where D is the inertia matrix of the system and is given by

H, Ho1'[H
p=H -[gT HEL] > @ " 9
q [ vq q an Hn an ®)

| It can be shown that D= DT > 0. Hg is the inertia matrix corresponding to the fixed base manipulator

H = z;[miJLJUHLIiJM], H eR™" (10)

The second term on the right hand side of Equation (9) arises due to the fact that the base of the space robot is free.
Since the working environment is non-gravitational and no actuators generating external forces are employed, the
linear and angular momenta of the whole system are conserved. Since the inertial frame is fixed to the orbit, the
whole system can be assumed to be stationary with respect to the inertial frame at the initial state. Thus the above
two momenta are always zero for the whole system. Note that it is implicitly implied that the satellite is a non-
spinning body. Using the assumption of zero initial momenta the individual components comprising the second

term on the right hand side of Equation (9) can be writien as



H,=m]y; , H, eR™ (1)

< < T |
H°= ZI‘ + Zmi[riX] [rix], HQ ER - - (12)
i=0 =l
H,=-m[r.x], Hg €R> (13)
H, = i{milu, H, eR*™ (14)
1=
Hg, = 2.{1J a+mrxiy}, Hg eR™ 15)
i=1
where for any vector
f,
f’—' fz (16)
fy
0 "f3 fz
[fx]=| f; 0 -f, an
-f, £, 0 '
and 343 is the 3x3 identity matrix.

Since there is no potential energy in non-gravitational environment, the Lagrangian, A, is equal to the kinetic

energy
A=T (18)
So the system dynamics is given by
d{oA) oA
2= 19
m(&J % @)

where T is an nx1 vector of input torques. Paralleling the development for fixed base robots given by Spong and
Vidyasagar [7], the equations of motion for space robots can be written as, )



D(q)j+h(q,q)=T . (20)

where

h(q,d)=C(a.9)4 - @1)
and the elements of the matrix C are given by
D,; oD,, 9D;
= e g 22)
,.1{ 2, 99 o)

2.3 Base Motion
The conservation of linear and angular momenta yiélds expressions for the base translational and angular

Vs _ H, Hy : HV‘!. .
[QB]——[an HnT[Hm]q @

Using the above expressions, the evolution of the base position and orientation with time can be determined as

velocities

follows
Xp | [CyCa CySeSe —SyCe CySeCy + SySe
Yo |=| SyCo SySeSe +CyCq SySeCy ~CySe Vg 24)
Zb —Sg CQS’ CQC.
¢| [1 sytan(8) c,tan(8)
é =l0 Ce =Sy B 25
w| [0 sy5ec(8) cysec(8)
where

€y ®C0s(), 5y = sin*) (26)



3. Control System Design

3.1 Feedback Linearization

Assuming that the dynamics of the space robot is described by Equation (20), where D and h are completely
* known, the feedback linearization or inverse dynamics technique [7] can be used to design controllers for tracking
prescribed command trajectories for the joint angles. This can be accomplished by letting

t=Du+h 7

where u is the pseudo-control, i.e., it is the control input to the lincarized system. With the control law given by
Equation (27), the closed-loop system becomes
{‘3}= A{‘_‘}+ Bu (28)
q q

where
01 0

A simple PD (Proportional-Derivative) type of control law is chosen for the feedback linearized system
u=Ga+K, (4 - +K (0 -a) (30)

where K; and K are proportional and derivative gain matrices, respectively. Thése matrices are usually chosen to
be diagonal in order to achieve decoupled response among the joint angles. Substituting for u from Equation (30)
into Equation (28), one obtains '

E=Ae 31

where e=(eT e])T,e, =q, - Q. €, =4, -4, A,=A-BK,and K= [K; Kp]. IfK; >0and K3 > 0, the error
dynamics as given by Equation (31) is asymptotically stable. The freedom in selecting the gain matrices can be
utilized to meet performance specifications for the closed-loop system.

The preceding discussion assumes availability of perfect knowledge about the system dynamics. However, in
practice, D and h are usually imprecisely known due to modeling inaccuracies. Furthermore, D and h may be 00



complex to be used for real-time control implementation. In the following sub-section, a control law that is robust
for bounded uncertainties in D and h is given. The control law results in closed-loop asymptotic tracking.

3.2 Robust Feedback Linearization Using Passivi
The development in this section follows that given in (6] very closely. In the presence of modeling
uncertaintics, the control law is given as

t=D.u+h, (32)

where D and h are computed versions of D and h respectively. Substituting for t and u from Equations (32) and
(30) into Equation (20) it can be shown that the closed-loop system dynamics is given by

é=A+Bv (33)
where
v=Au+d | (34)
and
A=(I-D'D,), =D'(h-h,) (35

The first step in the design proposed in [6] is to choose the gain matrix K = [K; K3] and an output matrix F such
that the linear system given by

é=Ae+Bv

y=Fe (36)

is SPR (Strictly Positive Real). This can be achieved as outlined in the following theorem. A definition of the
concept of Strictly Positive Realness can be found in Slotine and Li [8].

Theorem 1 [6]. Let K1 and K2 be such that

Kl =d‘i'ag[k1i];kli >0, i= 1,...,“
K, = diaglky; } ky; >0,i=L...,n 37
(kzi)2 >ky;, i=1l,...,n



then if F = K, the system described by Equation (36) is SPR.

The proof is omitted here, the interested reader is referred to [6]. Note that the conditions of the theorem given in
Equations (37) are extremely easy 1o satisfy. )

With the linear system (37) being SPR, the passivity theorem (Desoer and Vidyasagar, [9]) can be used to

design asymptotically stable controllers as shown in the following theorem. The theorem is very similar to that
given in [6], with the only difference being in the way in which the uncertainty bound on the h vector is

172
characterized. The notation [x}; = (ijx dt) is used in the sequel.
0

Theorem 2. Let the following two inequalities hold
l -
D<-1 (r>0) (38)
o -no] < clul; +d VT>0 (c20,>d20) (39)

Furthermore, let 4 € L2. Then if D¢ = al where

a>°—r+-‘ | | (40)

the closed-loop system is asymptotically stable.

Proof. The closed-loop system as given by Equation (33) can be represented in block diagram form as shown in
Figure 2. Itis first shown that the nonlinear block in the feedback path is passive [9].

v_gliaBKl | Ke
- SPR
v e u + .-
v Au—-d n qd

Figure 2. Robust Feedback Linearization Using Passivity Theorem.



Consider

Let the first and second integrals on the right hand side be denoted by Iy and I respectively. Then

Noting that

one can obtain

On the other hand,

T
I=[-u"vdt (T>0)
0

T
= [-uT(Au+8)dt
0 .

T T
= (—] uTAudt) + (—-_[ uTSdt)
0 0
T
I;=[uT (@D -Dudt
0

Ds-:-l = aD? -I2 (-1l

I 2(ar- I)I“ﬁ- )

T
~I,=[u'D7(h-h,)dt
0

<l o b - hc)l_r (Hélder' s Inequality)

< Juff; (cfull; +d]

Hence

12 (ar—c-Djuf} =djul, = f(luly)

It can be shown that if (ar - ¢ - 1) > 0, then

d2

f(luIT)z—4(ar_c_l) v Jul; 20

10

@n

@2

@3

(44)

@5)

@6)

@n



Hence

T T a2 48
- dti2————— VYT>0 .
‘!, vy 4(ar-c-1) “8)

Thus a sufficient condition for the nonlinear block to be passive is that a > (c+ D

Additionally, the transfer function of the feedforward block [Ac, B, K] is proper and has no poles on the
~ imaginary axis. Hence it has finite gain (Doyle, Francis, and Tannenbaum, [10]). Since Gg € L2, then using the

passivity theorem [9], one can conclude that the signals u, Ke, and v are bounded. Moreover, since the feedforward
block is SPR, Ke(t) = K;e;(t) + Kzex(t) goes to zero asymptotically. This in turn implies that e, (1) and ey(1)

individually approach zero asymptotically [8].

The first condition of the theorem, given by Equation (38), is easy to saﬁsfy since D is upper bounded.
However, the second condition, given by Equation (39), might not be easy to verify in a straightforward manner in
all applications. '

4. Simulation Results

As an example, results are illustrated for a single link space robot shown in Figure 3. Equation (20) describes
the dynamics of this one degree of freedom system. The éystem inertia, computed using Equation (9), turns out to
be

1
D(q;)=mP} +1; - [mP; (Poc + P)+1 7 (49)
where
d=m’(P2 + P +2PPic;)+ 1, +1; (50)
and m’=mym, / (m, + m,). Using Equations (21) and (22), h is determined to be
m’P_Ps

(a1, 1) =T LM P (P, + Picy)+ L] [m Py Pocy + PO+ L] (s1)

In Equations (49) through (51), ¢, =cos(q,).s; = sin(q;).

11



Figure 3. A Single Link Planar Space Robot.

It can be seen easily that as mg —* o, and Ig —* oo,

DomP?+I, h—0 (52)

which represents the case of a fixed base manipulator. Equation (24) is used to determine the evolution of the base

position with time
. m’ 1 .
Xp = ;n_o[Pls‘" r {m'P, (Pocy +Py) + Il} '(Plsvl + Posv)]ql
(53)
. m 1 .
Vo=1— ['chu *3 [mP,(Pc, +Py)+ L} '(Plcvl + Pocv)]ql
0
where
Sy1 =Sin(¥ +q; ) Cyy = cCOS(Y + q;) (54)

Finally, the base attitude dynamics is obtained using Equation (25)

12



. 1 . j
V= _-&[m'Pl(Pocl +P)+ I1]‘511 5)

Next, a feedback controller is designed for the space robot using the results of Theorems 1 and 2. Closed-loop
results are generated for a step command of 1 radian to the joint angie. Note that in general, for end tip motion
control in the inertial space, the inverse kinematics problem needs to be solved to generate a command trajectory for
the joint angle. Table 1 lists physical parameters of the example robot used in simulation. The base and link masses
are of the same order of magnitude. The feedback gains are chosen to be kg = 0.4 and k2 = 1.0. This choice of gains
satisfics Equations (37) and in case of no modeling uncertainty, yields a élosed-ldop response without any
overshoot. The fact that the system center of mass should remain stationary in inertial space is used to monitor the
step-size of integration to achieve numerical accuracy. Simulation results are shown for the case in which there is
no modeling uncertainty, and for two other cases that involve differing degrees of uncertainty. It is assumed that
Equations (20) and (49) through (51) represent the true robot; the uncertainty is introduced in computing D and h.
An upper bound for the system inertia, needed for condition (39) of Theorem 2, is given for this particular case by

1 mPrey (56)
r

a in Theorem 2 is assumed to be 1.1/ for both cases involving uncertainty. The choice of he however, is different

for the two cascs. In the first case, the following simplification to h is used for computing the closed-loop control

h, =mP,P;s,q, 7N

The second case corresponds to an even greater simplification to h
h, =mP Pid, ' (58)
Figures 4 through 7 show closed-loop results for the nominal case and for the first case involving uncertainty. ¢

= 0.01 was chosen to satisfy condition (41) of Theorem 2. d was chosen to be 2.5. Figure 4 shows that asymptotic
tracking in the joint angle is achieved in the face of uncertainty. This is associated with a slight performance

Table 1. Physical Parameters of Example Robot.

Body P (meter) l(meter) m(kg) I(kgm?)
0(Base) 3.0 - 50 30.0
1(Link) 3.0 6.0 1.0 3.0

13
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gatisfies condition (40) of Theorem 2.
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5. Conclusions

A control method based on feedback linearization and passivity concepts that was propdsed carlier for fixed
base robots is modified and extended to the case of space robots. The control law results in asymptotic joint angle
tracking in the face of bounded uncertainties. For the first time, closed-loop simulation results are presenwd using
this control method. For the simple example illustrated in the report, the control method shows promising results.
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